48,227 research outputs found

    How Would You Like Your Television: With or Without Borders and With or Without Culture--a New Approach to Media Regulation in the European Union

    Get PDF
    This Essay analyzes the effectiveness of television broadcasting regulations as a means to effectuate the promotion and protection of a pan-European culture, namely, television broadcasting regulations. First, in Part I, this Essay considers the broader background developments in the audio-visual sector that led to the passing of the Directive. Part II looks at the advantages and disadvantages of the most controversial aspect of the Directive, namely, the quota provisions. Part III critiques the Directive\u27s effectiveness in realizing its dual goals of both protecting and promoting a pan-European culture. Finally, Part IV compares the goals enunciated in the Federal Communications Act ( FCC Act ) with those enunciated in the Directive. Both sets of goals reflect similar concerns and interests, although the United States takes a much broader approach in realizing its goals. This Essay concludes that the Community should, like the United States, take a more expansive approach to its audio-visual policy, similar to the approach reflected in the FCC Act, in order to strengthen and effectuate a more solid and unified European broadcast regulatory scheme that both protects and promotes a European culture

    A study of 35-ghz radar-assisted orbital maneuvering vehicle/space telescope docking

    Get PDF
    An experiment was conducted to study the effects of measuring range and range rate information from a complex radar target (a one-third scale model of the Edwin P. Hubble Space Telescope). The radar ranging system was a 35-GHz frequency-modulated continuous wave unit developed in the Communication Systems Branch of the Information and Electronic Systems Laboratory at Marshall Space Flight Cneter. Measurements were made over radar-to-target distances of 5 meters to 15 meters to simulate the close distance realized in the final stages of space vehicle docking. The Space Telescope model target was driven by an antenna positioner through a range of azimuth and elevation (pitch) angles to present a variety of visual aspects of the aft end to the radar. Measurements were obtained with and without a cube corner reflector mounted in the center of the aft end of the model. The results indicate that range and range rate measurements are performed significantly more accurately with the cooperative radar reflector affixed. The results further reveal that range rate (velocity) can be measured accurately enough to support the required soft docking with the Space Telescope

    Evaluating the Variability of Urban Land Surface Temperatures Using Drone Observations

    Get PDF
    Urbanization and climate change are driving increases in urban land surface temperatures that pose a threat to human and environmental health. To address this challenge, we must be able to observe land surface temperatures within spatially complex urban environments. However, many existing remote sensing studies are based upon satellite or aerial imagery that capture temperature at coarse resolutions that fail to capture the spatial complexities of urban land surfaces that can change at a sub-meter resolution. This study seeks to fill this gap by evaluating the spatial variability of land surface temperatures through drone thermal imagery captured at high-resolutions (13 cm). In this study, flights were conducted using a quadcopter drone and thermal camera at two case study locations in Milwaukee, Wisconsin and El Paso, Texas. Results indicate that land use types exhibit significant variability in their surface temperatures (3.9–15.8 °C) and that this variability is influenced by surface material properties, traffic, weather and urban geometry. Air temperature and solar radiation were statistically significant predictors of land surface temperature (R2 0.37–0.84) but the predictive power of the models was lower for land use types that were heavily impacted by pedestrian or vehicular traffic. The findings from this study ultimately elucidate factors that contribute to land surface temperature variability in the urban environment, which can be applied to develop better temperature mitigation practices to protect human and environmental health

    Baryomorphosis: Relating the Baryon Asymmetry to the "WIMP Miracle"

    Full text link
    We present a generic framework, "baryomorphosis", which modifies the baryon asymmetry to be naturally of the order of a typical thermal relic WIMP density. We consider a simple scalar-based model to show how this is possible. This model introduces a sector in which a large initial baryon asymmetry is injected into particles ("annihilons") phi_B, \bar{phi}_B of mass ~ 100 GeV - 1 TeV. phi_B-\bar{phi}_B annihilations convert the initial phi_B, \bar{phi}_B asymmetry to a final asymmetry with a thermal relic WIMP-like density. This subsequently decays to a conventional baryon asymmetry whose magnitude is naturally related to the density of thermal relic WIMP dark matter. In this way the two coincidences of baryons and dark matter i.e. why their densities are similar to each other and why they are both similar to a WIMP thermal relic density (the "WIMP miracle"), may be understood. The model may be tested by the production of annihilons at colliders.Comment: 7 pages, 2 figures; Modified to address B washout issue. Higgs replaced by inert doublet, no mixing of annihilons. Version to be published in PRD, typos correcte

    Cycle Accurate Energy and Throughput Estimation for Data Cache

    Get PDF
    Resource optimization in energy constrained real-time adaptive embedded systems highly depends on accurate energy and throughput estimates of processor peripherals. Such applications require lightweight, accurate mathematical models to profile energy and timing requirements on the go. This paper presents enhanced mathematical models for data cache energy and throughput estimation. The energy and throughput models were found to be within 95% accuracy of per instruction energy model of a processor, and a full system simulator?s timing model respectively. Furthermore, the possible application of these models in various scenarios is discussed in this paper

    The use of simulation in the design of a road transport incident detection algorithm

    No full text
    Automatic incident detection is becoming one of the core tools of urban traffic management, enabling more rapid identification and response to traffic incidents and congestion. Existing traffic detection infrastructure within urban areas (often installed for traffic signal optimization) provides urban traffic control systems with a near continuous stream of data on the state of traffic within the network. The creation of a simulation to replicate such a data stream therefore provides a facility for the development of accurate congestion detection and warning algorithms. This paper describes firstly the augmentation of a commercial traffic model to provide an urban traffic control simulation platform and secondly the development of a new incident detection system (RAID-Remote Automatic Incident Detection), with the facility to use the simulation platform as an integral part of the design and calibration process. A brief description of a practical implementation of RAID is included along with summary evaluation results

    An economical vent cover

    Get PDF
    Inexpensive formed-plastic vent cover has been developed that allows controlled purge of vent systems and also provides blowout protection. Cover can also be used in relief mode to allow normal system relief flows without disengaging from vent system. Cover consists of two parts made of plastics with varying densities to fit media used and desired pressures
    • …
    corecore